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ABSTRACT 

Evaluation of Local Preconditioners for Multigrid 

Solutions of the Compressible Euler Equations. (December 1996) 

Barrett Taylor McCann, B.S., United States Air Force Academy 

Chair of Advisory Committee: Dr. David L. Darmofal 

The goal of this study is to examine and compare the effectiveness of two local 

preconditioners, when used in a multigrid algorithm, in accelerating the rate of con- 

vergence to an accurate steady solution of the two-dimensional compressible Euler 

equations. In this study, both the matrix preconditioner developed by Türkei and 

the block- Jacobi preconditioner are tested. While both preconditioners exhibit simi- 

lar damping properties for error modes which are high-frequency in both coordinate 

directions (i.e., high-high modes), it is known that the Türkei preconditioner provides 

significantly better low-frequency propagation. In this thesis, this improved low- 

frequency propagation is shown to also improve (albeit nominally) the damping for 

modes which are high-frequency in only one direction (high-low and low-high modes). 

Thus, an important aspect of this work is assessing how improved low-frequency 

propagation can enhance multigrid convergence rates for preconditioned iterative 

techniques with similar damping properties. The results of first- and second-order 

numerical studies in a full-coarsening multigrid algorithm over several low freestream 

Mach numbers and with different boundary conditions indicate that the superior 

low-frequency propagation characteristics of Turkel's preconditioner result in better 

convergence rates than the block-Jacobi preconditioner. In addition, conclusions are 

drawn about the usefulness of multigrid with and without preconditioning, as well as 

the relative accuracy of the different solution methods used. 
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CHAPTER I 

INTRODUCTION 

In recent years, the rapid development of high-speed computers has led to increased 

use of computational techniques in predicting solutions to flows generated by specific 

geometric bodies. Certainly, the accuracy of computed solutions and realistic repre- 

sentations of such fluid dynamic phenomena as shocks and boundary layers are highly 

important considerations in designing and implementing a computational technique. 

However, though today's computers are admittedly far quicker and more powerful 

than those of even a decade ago, rapid rate of convergence is still a critical criterion 

in the selection of a computational fluid dynamics scheme. As ever more advanced 

schemes are more capable of analyzing flows about more complex geometries, it be- 

comes critical to perform calculations upon very fine grids in areas where highly 

detailed and accurate solutions are required. As these complex schemes may easily 

require millions of calculations, taxing even the fastest and most powerful comput- 

ers, it is necessary to implement techniques to minimize the number of calculations 

needed to generate an accurate steady solution. 

To this end, acceleration techniques can be used which eliminate the time accu- 

racy of the solution but allow faster convergence to the steady state (as long as the 

transient nature of the flow is not considered important). Two important techniques 

proposed in improving rate of convergence to a steady solution are multigrid and local 

preconditioning, both of which will be examined in this study. 

A main feature of multigrid is the use of ever-coarser grids upon which a partic- 

ular CFD scheme is applied [1]. The result of such a utilization is the representation 

The journal model is AI A A Journal. 



of a low-frequency error mode as a higher-frequency mode on a coarser grid [2]. Itera- 

tive schemes, or smoothers, have been developed which rapidly damp high-frequency 

errors for the compressible Euler and Navier-Stokes equations [3, 4, 5, 6, 7]. A key 

ingredient of such smoothing methods is the use of a local block preconditioner to 

cluster high-frequency error modes. The use of multigrid in conjunction with a well- 

chosen smoother thus allows the quick high-frequency damping characteristics of the 

smoother to be applied to all error modes, substantially accelerating solution conver- 

gence [5, 7, 8]. 

A less understood phenomenon is the role of propagation in error removal for 

multigrid methods applied to hyperbolic problems. The pioneering work of Lötstedt 

[9] showed that low-frequency modes are accelerated by a factor of x — (p + q)(2l — 1) 

for p presmoothing iterations, q postsmoothing iterations, and I multigrid levels. 

Thus, assuming boundary conditions permit error modes to leave the domain, any 

techniques which accelerate low-frequency propagation should favorably affect multi- 

grid convergence. 

Preconditioners can be designed using either the original continuous equations 

or the discrete equations. The type of matrix preconditioners proposed by Türkei and 

van Leer are designed based on the continuous equations. These preconditioners have 

been designed to equalize different characteristic speeds which are present over the 

entire range of Mach numbers [10, 11]. Taking for example the 1-D Euler equations, 

one wave travels at a speed of u + a, another travels at u, and a third travels at u — a 

for fluid speed u and speed of sound a. In one dimension, a local preconditioner can 

perfectly equalize these characteristic speeds [11]. In two dimensions, unfortunately, 

preconditioning is more difficult. In fact, no preconditioner can equalize the propa- 

gation speeds over all freestream Mach numbers; however, the van Leer and Türkei 

preconditioners optimally reduce the spread of the propagation speeds for the Euler 



equations [12, 10]. In addition, these continuum-based preconditioners can have good 

error-damping characteristics [5]. 

A typical local matrix preconditioner based on the discrete equations is the block- 

Jacobi preconditioner. Jacobian-type preconditioners are based on the Jacobi iter- 

ative method; in this case the preconditioner is the block-diagonal matrix resulting 

from an approximate linearization of the discrete equations. The block-Jacobi precon- 

ditioner also displays improved error-damping characteristics [3, 4, 7] but, in contrast 

to the continuum-based preconditioners, does not have the improved propagation 

characteristics. Use of this type of preconditioner, therefore, may not provide conver- 

gence acceleration as effectively as the Türkei and van Leer preconditioners. 

The goal of this study, then, is to evaluate the performance of the Türkei and 

block-Jacobi preconditioners in a full-coarsening multigrid algorithm. In particular, 

several comparisons will be made. First, the convergence rates of the preconditioned 

systems will be compared to the rate of convergence of the unpreconditioned system 

and to each other. Second, the dependence of each system on freestream Mach number 

will be examined. Third, the apparent accuracy of each system will be observed. 

Finally, conclusions will be drawn about the usefulness of multigrid techniques with 

and without preconditioning. The first- and second-order Euler solvers will be applied 

over a range of low freestream Mach numbers and to a variety of boundary conditions 

in order to extend observations to a wide range of low-speed test conditions. 

In this thesis, Chapter II briefly describes the numerical methods used, includ- 

ing the Euler solver (Section A), the multigrid algorithm (Section B), and the two 

preconditioners (Section C). An analysis of the dissipation and propagation charac- 

teristics of the different systems is performed in Chapter III. Finally, in Chapter IV, 

the specific tests conducted are described, the results of these tests are shown, and 

conclusions are drawn about the performance of the numerical techniques employed. 



CHAPTER II 

NUMERICAL METHODS 

The Euler equations comprise a hyperbolic system of inviscid fluid dynamic equations 

which represent the principles of mass, momentum, and energy conservation. This 

system of equations is useful when the viscous effects of a flow are negligible, such as 

when the boundary layer is very thin in comparison to the characteristic length of a 

flow field, and its interaction with the inviscid portion of the flow can thus be largely 

ignored. The usefulness of the Euler equations lies in the fact that they can be more 

efficiently solved numerically than the full Navier-Stokes equations [13]. 

The two-dimensional Euler equations are expressed in integral form as 

d_ 
~dt 

fudA+ £[Fdy-Gdx} = 0 (1) 

The four-element vector U contains mass, momentum, and energy variables: 

U = 

P 

pu 

pv 

pE 

with local density p, x-velocity u, y-velocity v, and specific total energy E. The flux 

vectors F and G are defined as 

pu 

pv? + p 
F = 

puv 

puH 



G 

pv 

puv 

pv2 + p 

pvH 

where p = (7 - l)[pE - \p(u2 + v2)] is the local pressure and H = ^ + \{u2 + v2) is 

the local stagnation enthalpy, with local speed of sound a and ratio of specific heats 

7 (which is here set to 7 = 1.4, the specific heat ratio for air). The integrand dA is 

the differential area of the flowfield. 

A.    Basic Solver 

The numerical method used here is a structured-grid MUSCL scheme [14] using Roe's 

approximate Riemann solver [15]. This two-dimensional solution scheme is based on 

a one-dimensional approach, solving a 1-D Riemann problem at each cell face and 

combining the results from the four faces of each quadrilateral cell. 

Using this approach, the Euler equations in each computational cell can be ex- 

pressed in semi-discrete form as 

xf + Ä = o 
dt 

(2) 

where the residual R represents the net flux in each cell and A is the cell area. 

Applying the MUSCL scheme, this residual is approximated as 

R = ]T QkFkAsk (3) 
Jb=l 

where As is the length of a given cell face and the matrix Q rotates from an x-y 



coordinate system to a grid-normal coordinate system: 

Q 

10          0 0 

0   coscj> — sine/» 0 

0   sin</>     cos</> 0 

0      0          0 1 

where <f> is the grid-normal angle with respect to the x-axis. F is the flux at the cell 

face. Using the Roe scheme, this flux is given by 

1 1 
F = - {Fright + Fieft) - - (U, right Uleft) (4) 

where A = |jj and U and F are the grid-aligned state and flux vectors, respectively. 

The subscripts left and right indicate the states on either side of the cell face. The 

matrix A has the same eigenvectors as A, but its eigenvalues are the absolute values 

of the eigenvalues of A. This flux approximation is more efficiently implemented as 

follows: 
1 

F = Ö (FrigM + Fie ft) - ö 53 \Xk\VkTk (5) 
fc=l 

where A^ are the eigenvalues of A, vk are the dot-products of the left eigenvectors of 

A and the state vector jumps Urigu — Uuft (which represent the amplitudes of the 

jumps in the characteristics), and the vectors fk are the right eigenvectors of A: 

Ai u — a 

Ao.3 = ü 

ü + a 

wi = ^[Ap-paAu] 

v2 — Ap ;Ap 



v3 = pAv 

n = 

r                              -1 

1 

ü — a 
r-i = 

V 

H — üa 

n = ^[Ap + paAu] 

1 

ü 

v 

Hü
2
 + V

2
) 

0 1 

r3 = 
0 

f4 = 
ü + a 

1 V 

V H + üa 

with A() = Qright ~ Qieft- The terms p, ü, v, H, and a are Roe-averaged values of 

density, x-velocity, y-velocity, total enthalpy, and speed of sound, respectively: 

H 

° — y Pright/Pleft 

P = °Pleft 

Uleft + Wright 

l + a 

Vleft + bright 

l + a 

Hleft + <?Hright 

U 

l + a 

ä = y(7-l)[#-2(Ä2 + t)2)] 

For first-order solutions, the left and right state vectors, Uieft and Uright, are the 

state vectors in the cells on either side of the face. In extending the scheme to second- 

order accuracy, van Leer's kappa scheme is used [14]. The kappa schemes make use 

of the state vectors in four adjacent cells instead of two. The left and right states at 

the jth cell face, Uf and Uj~+1, respectively, are defined as 

Uf = Uj + -8Vj 
1 
2l (6) 



and 

UJ+1 = Uj+l - -8Uj+l (7) 

where 

SU, = \(i - K)4>f_l/2(Uj - Uj-i) + \(i + K)<I>J+1/2(UJ+I - Uj) 

5Uj+l = i(l - K)4>J+a/2(Uj+2 - Uj+1) + \{l + K)4>++1/2(UJ+1 - Uj) 

The limiters <f> are designed to preserve monotonicity and to ensure the scheme is total 

variation diminishing. In this work, K = 0 is used; this is Fromm's central difference 

gradient. In addition, no limiter is used (i.e. 0 = 1), since smooth flows at low 

Mach numbers do not exhibit discontinuities and limiting is therefore unnecessary. 

In this implementation, the primitive state vector is used to perform the higher-order 

interpolation: 

P 

Un 

u 

v 

P 

The implementation of the MUSCL scheme, therefore, involves calculating the 

flux at each cell face, combining these fluxes over the four faces of each cell, and then 

computing each cell update. In this work, a multistage optimal damping scheme is 

used: 

£/(0) = xp 

.. A 4- 

(8) [/W: = E/(°>     ai fi(Lr(01) 

u^-. = C/(0)     a2 
uAtmaxR(U^) 

Un+1 = --U® 

where v is the Courant number. For this unpreconditioned iterative scheme, Atri 



is defined as 
T   4 

AimL = -I £ Xrnax,k&Sk (9) 
A k=l 

with r = 1 for first-order accuracy and r = 1 — K for second-order accuracy; \max 

is the largest eigenvalue. For first-order solutions, a single-stage scheme is used (i.e. 

oil = 0, a2 = 1) with v — 1. For the second-order scheme, the coefficients a.\ and a2 

are here selected to be 0.4978 and 1.0, respectively; the Courant number v = 1.7598 

is also used. These values are shown to be optimal for a two-stage K = 0 scheme 

by Lynn [5]. (It is noted that this optimal Courant number differs from Lynn's by a 

factor of two, due to a slight difference in the definition of the Courant number used 

here.) 

B.    Multigrid 

Multigrid solution algorithms utilize multiple scales of discretization, allowing the 

damping properties of a well-chosen smoother to be applied to all error modes in an 

approximation to the steady solution. The process for achieving this goal is briefly 

outlined as follows. First, represent an initial solution on the desired fine grid. Apply 

an iterative scheme until the high-frequency components of the error are eliminated 

and only smooth, low-frequency error modes remain. Next, interpolate this new 

solution to a coarser grid (with each coarse grid cell composed of four fine grid cells, 

for example) via a restriction operator. Doing so will represent the low-frequency 

error modes from the fine grid solution as higher-frequency modes on the coarser grid. 

Again, apply the iterative scheme to damp these high-frequency error components, 

and restrict to yet a coarser grid. Repeat this process until the solution is smoothed 

on the coarsest desired grid. Then, through a prolongation process, extrapolate this 

coarse grid solution back to each successive finer grid (smoothing again on each grid, 
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if desired) until a new solution is obtained on the original finest grid. Assuming, 

therefore, that a smoother can be developed which efficiently damps high-frequency 

error components on a fine grid, allowing only low-frequency modes to be passed to 

the next coarser grid, multigrid can then accelerate convergence to a steady solution 

by applying the good smoothing properties of an iterative scheme to a much larger 

range of error components than the same smoother could efficiently affect on a single 

grid. 

This multigrid process can be written in recursive form as vh -f- NMVh(vh, fH) 

and is described by Lynn [5] as follows. Consider a nonlinear problem to be solved 

on a fine grid Q,h: 

Nh{uh) = fh (10) 

If an approximate solution for uh on this grid is vh, then the residual can be expressed 

as 

rh = fh- Nh{vh) (11) 

A restriction operator, which interpolates an approximation from a fine grid Qh to 

the next coarser grid Q2h, is Jjf\ and a prolongation operator, which returns a coarse 

grid approximation to the next finer grid, is J^. The algorithm vh <- NMVh(vh, fH) 

is: 

• Using smoother P, relax p times on Qh to obtain an approximate solution vh 

• If Slh is not the coarsest grid: 

_ rh ±_ fh _Nh(vh) 

_   ph <_ J2hrh + N2h(j2hvhj 

—  V 2/i <- Ilhvh 

- v2h^NMV2h(v2h,f2h) 
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- Correct vh <- I%h(v
2h - lfvh) 

• Using smoother P, relax q times on Qh to improve the approximate solution vh 

The algorithm NMV as described here follows the full-coarsening algorithm. This 

algorithm, by simultaneously coarsening in both the x- and y-directions, requires the 

smoother to damp modes which are high-frequency in any direction. Unfortunately, 

the explicit multistage scheme can only effectively smooth errors which are high- 

frequency in both directions (high-high modes). This means that the error modes 

which are high-frequency in one coordinate direction but low-frequency in the other 

(high-low and low-high) will not be efficiently damped by the iterative scheme. Use 

of a semi-coarsening multigrid algorithm, however, can overcome this limitation by 

coarsening in only one coordinate direction at a time, therefore representing high- 

low and low-high modes as high-high on their respective coarser grids [16]. This 

algorithm adds additional complexity to multigrid implementation and was not used 

in this study, but remains for future investigations. 

In practice, it is not necessary to use a recursive algorithm to implement a multi- 

grid cycle. Multigrid can be more conveniently implemented as follows: 

• Using a modification of the multistage solver defined in the previous section, 

relax p times on the finest grid: 

Uil) = t/f - ai^^.[R(^) + Ph] (12) 

f/f = i/<°> - a2^a^[R{^) + ph) 
Ah 

rrn+l _ rr(2) uh       — uh 

where the multigrid source term Ph = 0 on the finest grid Q,h and is here defined 
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on coarser grids as P2h = £fc=i[-R(C4) + ph] - R(U2h) 

• Restrict the new fine grid solution Uh to the next coarser grid: U2h = Ilh{Uh) 

• Using the multistage solver, relax p times on the coarse grid 

• Repeat until the solution is relaxed p times on the coarsest grid 

• Using the multistage solver, relax q times on the coarse grid 

• Prolongate the new coarse grid solution U2h to the next finer grid: Uh = Uh + 

4Ä - ilhuh) 

• Using the multistage solver, relax q times on the fine grid 

• Repeat until the solution is relaxed q times on the finest grid 

In this study, two presmoothing updates and two postsmoothing updates were 

performed on each grid level (i.e., p = 2 and q — 2), making the multigrid algorithm 

used a V-cycle. The restriction operator was a four-cell area-weighted average: 

U2hA2h = J2 UhAh (13) 
n=l 

The prolongation operator was as described by Tai [8], using the three coarse grid 

cells nearest to the cell-center of the fine grid cell: 

Uh = Uh + i(Atf2h)i + \(AU2h)2 + \(AU2h)3 (14) 

where the fine grid cell is included in coarse grid cell 1 and coarse grid cells 2 and 3 

are its neighbors, as shown in Figure 1. The terms A[/2/i are the changes in the state 

values on the coarse grid from before the prolongation to after the prolongation. 
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•   Fine grid state vector 

O   Coarse grid state vectors 

Fig. 1. Multigrid prolongation operator. 

C.    Local Preconditioning 

The continuum-based Türkei preconditioner and the discrete-based block-Jacobi pre- 

conditioner are now discussed. Implementation of these two preconditioners will first 

be described; a comparative analysis of their dissipation and propagation character- 

istics will then be performed. 

The Euler equations can be expressed in quasi-linear form as 

dU        dU     BdU 
dt dx dy 

0 (15) 

where A = |^ and B = §§. Preconditioner analysis and implementation is simplified 

via use of the symmetrized variables. The symmetrized variable system is defined as 
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dU = MdU, where 

dU 

and 

with 

dp 
pa 

du 

dv 

ds 

dU_     ~dU     ~dU_ 
dt dx dy 

(16) 

A = 

u a 0 0 

a u 0 0 

0 0 u 0 

0 0 0 u 

B = 

V 0 a 0 

0 i> 0 0 

a 0 u 0 

0 0 0 V 

ds is the linearized entropy perturbation.   In transforming from the symmetrized 

variables to the conserved variables, transformation matrices M and M_1 are used 

such that Ä = M_1AM and B = M_1BM.   These transformation matrices are 

defined in [5] as 

0     0 

P     0 

0     p 

pa(±M2 + ^)   pu   pv 

M 

e. 
a 

pu 
a 

pv 
a 

■\M- 

and 

M"1 

7-1 aM2 

2 P 

u 
P 

V 

p 

"(7-1) pa "(7-l)£ 
0 

pa pa 

0 

a2(2f±M2-l)    -(7-l)u     -(7-l)u    7-1 

where M = v'"2+"2 is the local Mach number. 
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Turkel's local preconditioner, which is valid only for low Mach number flows, is 

applied to the two-dimensional Euler equations as follows: 

.£ + P*-0 (17) 

where P is the preconditioner matrix. In terms of symmetrized variables, with P 

MPM"1, the Türkei preconditioner is defined as 

ß2 0 0 0 

-^(1 + ß2) 1 0 0 

-v-(l + ß2) 0 1 0 

0 0 0 1 

(18) 

with x-velocity u, y-velocity v, speed of sound a, and, with local Mach number M 

and freestream Mach number M^, ß = max (M, -qM^) for free parameter 0 < 77 < 1. 

This free parameter is set to 77 = 0.5 in this work and is necessary to limit transient 

growth due to eigenvector non-orthogonality as M —> 0 [17]. 

Within the framework of Roe's approximate Riemann solver and a multigrid 

algorithm, Turkel's preconditioner is implemented via the following two modifications 

to the basic solver. First, in calculating the residual, the flux function is altered such 

that 

F = \ {Fright + Fuft) - \MP- PA M-1 {UrigK - Uuft) (19) 

This formulation ensures that as the steady state is approached, the preconditioned 



16 

system approximates the original system. The expression P -l PA is provided: 

»-1 PA 

y/cfi—u2. 

0 0      0 
u(l+flv^P     ßyja2 _ U2       Q        0 

£>32 |«|    o 

0 0 0     Id 

ßa 

Ai 
(20) 

with 

An = 
v(l + ß) u2 (1 + ß2) Va^v2 \u\ a2ß] 

Dsn = 

ßa (u2 + u2ß2 - o?ß2) 

uv (1 + ß) [ßVa2 -u2- \u\] 

u2 + v?ß2 - a2ß2 

The Roe-averaged values for u, v, and a are used in this flux calculation. Efficient 

implementation of this flux approximation makes use of the fact that M_1 {Uright — 

Uieft) = tlright - Üuft and involves evaluating Mp-^PÄKÜright ~ Üleft) via matrix- 

vector multiplication instead of computationally expensive matrix-matrix multiplica- 

tion. This modification to the flux function has been previously shown to increase 

low Mach number accuracy [18, 19, 20]. 

Second, the state vector update for each cell is modified such that, for example, 

y(n+l) _ uin) _ v 
At, :-P(R + P2h) (21) 

It is noted that the computation of the local timestep is now based on the eigenvalues 

of PA: 

Ai = u 

X2 = u 

A3 = ßVa2 - u2 

A4 = -ßVa2 - u2 
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The development of the Türkei preconditioner is described in detail in [21, 22]. 

In addition, the block-Jacobi preconditioner was applied to this multigrid algo- 

rithm. In terms of conserved variables, the inverse of the preconditioner, P_1, for a 

particular cell is defined as a sum over the four cell faces: 

P-1 = T-^ £ Q*-1 Ak QkAsk (22) 
A     k=i 

where As is the cell face length and  Afc  is based on the Roe-averaged grid-normal 

state vector. Based on this definition, it is clear that the four-by-four matrix P_1 must 

be numerically inverted in order to obtain the preconditioner matrix P. This is done 

most efficiently by solving for the preconditioned residual PR directly, rather than 

by finding P and then applying the preconditioner to the residual R. It is noted that, 

because of the inclusion of A/Atmax in the block-Jacobi preconditioner, the update 

becomes independent of a timestep, which thus does not need to be calculated. In 

addition, the flux function does not require modification, as is required by Turkel's 

preconditioner. The reader is directed to [3, 7] for more detail about the application 

of the block-Jacobi preconditioner to the 2-D compressible Euler and Navier-Stokes 

equations. 

The high-frequency damping and low-frequency propagation characteristics of 

the unpreconditioned Euler equations and the Türkei and block-Jacobi preconditioned 

equations are now compared. To determine the high-frequency damping, the discrete 

system is linearized about a constant mean state and a Fourier decomposition in the 

x- and y-directions is assumed [3]. This gives two grid wave numbers, 8X and 9y, 

representing the x- and y-directions, respectively, which vary from — TV to n. 

A high frequency mode is generally defined as ir/2 < \9\ <ir. For full-coarsening 

multigrid, the appropriate frequencies which must be damped by the smoother are 

high-low, high-high, and low-high in the x- and y-directions.   For semi-coarsening 
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multigrid, only the high-high frequencies must be damped [4]. 

Figures 2-4 depict the low-low, high-low, low-high, and high-high frequency con- 

tent of the three second-order systems, superimposed on the amplification factors 

for the optimal two-stage scheme described earlier. The flow is oriented at an an- 

gle a = 20° from the x-axis. Only the analyses with a freestream Mach number 

of Moo = 0.1 are shown. However, similar patterns are evident for other low Mach 

number flows. 

As can be seen in Figure 2, at this freestream Mach number, the Euler equations 

contain several high-frequency error components quite close to the g = 1 amplification 

contour, resulting in very poor damping of these modes. This is true not only for 

the high-low and low-high errors (which could be overcome by a semi-coarsening 

algorithm), but also for high-high error modes. This fact indicates that no multigrid 

algorithm will likely be able to quickly damp all high-frequency components. Based 

on this result, it is theorized that an unpreconditioned system will not largely realize 

the benefits of multigrid. 

By contrast, the Türkei and block-Jacobi preconditioners (Figures 3 and 4, re- 

spectively) produce maximum amplification factors of high-high error modes of ap- 

proximately 0.72 (Türkei) and 0.79 (block-Jacobi). With this result in mind, it is 

likely that, under conditions where only dissipation could affect error elimination 

(a domain with periodic boundaries, for example), the convergence rates of the two 

preconditioned systems would be quite good when a semi-coarsening algorithm is 

used and would compare favorably with each other. A look at the high-low and 

low-high damping, however, shows that the two systems would likely not perform 

as well in a full-coarsening scheme. The Türkei preconditioned system still exhibits 

good high-low damping (gmax ~ 0.76), but low-high damping suffers (gmax ~ 0.96). 

The block-Jacobi system exhibits poor damping of both high-low and low-high error 
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Fig. 2. Fourier footprint, Euler equations, 64x32 square grid, M^ = 0.1, a = 20°, 

optimal two-stage iteration, amplification contours superimposed: a) low-high 

components, b) high-high components, c) low-low components, and d) high-low 

components. 
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(a) (b) 

(c) (d) 

Fig. 3. Fourier footprint, Türkei preconditioner, 64x32 square grid, M^ = 0.1, 

a = 20°, optimal two-stage iteration, amplification contours superimposed: a) 

low-high components, b) high-high components, c) low-low components, and 

d) high-low components. 
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Fig. 5. Wave fronts, Euler equations, M«, = 0.1. 

components (gmax ~ 0.94 and gmax « 0.98, respectively). Thus, it is apparent that, if 

incorporated into a full-coarsening multigrid algorithm, the two preconditioners will 

not perform optimally (with the Türkei preconditioner perhaps somewhat better than 

the block-Jacobi). 

To examine the low-frequency propagation characteristics of the three systems, 

the wave fronts resulting from a point disturbance are determined, following the work 

in [10]. Figures 5-7 show these wave fronts for the three systems at M^ — 0.1. The 

plots have been appropriately scaled such that the largest distance traveled is one. 

The Euler equations have two modes, entropy and vorticity, which convect with 

the freestream velocity and, at this low Mach number, are located near the origin. By 

contrast, the acoustic waves convect with the freestream velocity while simultaneously 

radiating outward at the speed of sound. This results in widely varying propagation 

speeds as M^ —> 0. 

The Türkei preconditioner successfully removes this variation in propagation 
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Fig. 7. Wave fronts, block-Jacobi preconditioner, M^ = 0.1. 
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speeds. Although not evident in Figure 6, the convective modes are now located 

at (1,0), traveling with the same speed as the acoustic waves. 

The block-Jacobi preconditioner places one convective mode (entropy) at (1,0), 

while the other convective mode (vorticity) remains close to the origin. The acoustic 

modes are also evident and are approximately located on a circle with radius of 

about 0.68, centered just to the right of the origin. It is the presence of the low-speed 

vorticity mode, which eventually falls on the origin as MM -4 0, that results in the 

poor propagation characteristics of this preconditioner. 

These wave front plots, then, suggest that the unpreconditioned and block-Jacobi 

preconditioned systems will not be able to efficiently propagate all low-frequency error 

modes out of a domain. Because the Türkei preconditioned system has all its smooth 

wave speeds equalized, however, all low-frequency error modes will be allowed to 

propagate out of the domain with equal efficiency. Thus, it is suspected that a flow 

simulation with free boundary conditions, which allow errors to propagate away, will 

benefit from this wave equalization characteristic of the Türkei preconditioner, and 

this preconditioned system will accelerate convergence more rapidly than the other 

two systems. 
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CHAPTER III 

NUMERICAL STUDIES 

Several numerical tests were performed to compare the effectiveness of the Türkei and 

block-Jacobi local preconditioners. First, random perturbations to the freestream val- 

ues were applied over a 64x32 grid on a square domain. This simple test would be 

used to illustrate the benefits of using the two preconditioned systems in place of the 

system without preconditioning. In addition, the use of free boundaries on the four 

sides of the domain would help to illustrate the importance of a preconditioner's prop- 

agation characteristics in improving convergence rates; identical tests with periodic 

boundaries would illustrate the relative dissipation properties of the unpreconditioned 

system and the two preconditioned systems. Second, flow over a solid circular arc 

bump was simulated. This flow was selected in order to evaluate the utility of the 

preconditioners in studying a more realistic problem. All tests were repeated for 

three low freestream Mach numbers (M^ = 0.05, M«, = 0.1, M^ = 0.2). Both first- 

and second-order solvers were used in each test. The use of single grid and two-, 

three-, and four-grid algorithms were used in each instance. The variety of tests were 

conducted with different solvers at different Mach numbers in order draw broader 

conclusions with applicability to a wide range of CFD applications. 

Comparisons of convergence rates are often based on the work unit, which is 

defined here as the amount of work required to calculate a residual on the finest grid. 

The work unit for a first-order test, then, is computationally smaller than a second- 

order work unit. In this study, work is considered to be based solely on the work 

required to calculate the residuals on each successive grid level within the multigrid 

algorithm. The work added due to intergrid transfers (prolongation and restriction) 

and to the application of local preconditioning is ignored, although these operations 
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generally add a ten to fifteen percent increase in actual work, with the block-Jacobi 

preconditioner being more expensive than the Türkei preconditioner. 

A.    Preconditioning Effectiveness 

For the first test case (free boundaries), a random small perturbation (between -0.01% 

and +0.01%) was added to the freestream condition. To eliminate grid-alignment- 

related problems, a flow angle of 20° to the x-axis was imposed. Optimal Courant 

numbers and multistage coefficients were used as mentioned in the previous section. 

Tests were run with both first- and second-order solvers over the three Mach 

numbers and four multigrid algorithms. In all cases, a V-cycle was used with two 

presmoothing iterations (p = 2) and two postsmoothing iterations (q = 2) performed 

on each grid level. Solutions were considered to be converged when the root-mean- 

square of the residual was decreased by six orders of magnitude. 

The amount of work required to achieve the desired level of convergence for each 

first-order test case is shown in Table 1. The work requirements for convergence for 

the second-order cases are listed in Table 2. The work requirements listed show that, 

for both first- and second-order solvers, over all three Mach numbers, both precondi- 

tioned provided significant improvements in convergence rates over the unprecondi- 

tioned system (as expected). However, though it is clear that either preconditioner is 

useful, it is apparent that the Türkei preconditioner performs noticeably better than 

the block-Jacobi preconditioner. As mentioned in the previous section, the slightly 

better high-low damping and vastly better propagation characteristics of the Türkei 

preconditioner would seem to explain this advantage. 
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Table 1. Work Requirements for Convergence, First-Order Solver, 64x32 Square Grid, 

Free Boundaries, a = 20°, p = 2, q = 2 

Moo = 0.05 

Grids No PC Türkei PC Block-Jacobi PC 

1 5373 753 917 

2 3414 439 751 

3 2890 280 805 

4 2921 224 815 

Moo = 0.1 

Grids No PC Türkei PC Block-Jacobi PC 

1 2865 757 885 

2 2020 439 589 

3 1643 280 566 

4 1656 224 578 

Moo = 0.2 

Grids No PC Türkei PC Block-Jacobi PC 

1 1573 761 749 

2 1176 445 457 

3 948 294 417 

4 961 224 425 
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Table 2. Work Requirements for Convergence, K = 0 Solver, 64x32 Square Grid, Free 

Boundaries, a = 20°, p = 2, q = 2 

Moo = 0.05 

Grids No PC Türkei PC Block-Jacobi PC 

1 5465 1145 2817 

2 7381 564 1824 

3 7697 315 1714 

4 7777 308 1755 

Moo = 0.1 

Grids No PC Türkei PC Block-Jacobi PC 

1 2889 1169 1785 

2 3984 575 1059 

3 3427 315 1087 

4 3497 308 1105 

Moo = 0.2 

Grids No PC Türkei PC Block-Jacobi PC 

1 1913 1169 1025 

2 2116 575 687 

3 1750 315 725 

4 1780 308 737 
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The same matrix of tests was also performed with the imposition of periodic 

boundaries. The results of these first- and second-order tests are tabulated in Tables 

3 and 4, respectively. The results listed as DNC* did not reach the desired level of 

convergence after 5000 multigrid cycles. As before, it is quite apparent that the pre- 

conditioned systems perform significantly better than the original system, with Türkei 

again performing best. With this periodic boundary condition, however, the advan- 

tage of the Türkei preconditioner's low-frequency error propagation characteristics are 

neutralized and only its dissipation characteristics can be deemed responsible for the 

improvement over the block-Jacobi preconditioner. This theory is further supported 

by the first-order M^ = 0.2 results, where the block-Jacobi preconditioner seems 

to begin "catching up" with the Türkei preconditioner. A Fourier footprint analysis 

shows that the damping properties of the two systems are even more comparable at 

this flow speed. 

Finally, it is noted that several of the solutions are listed in Table 4 as unstable. 

The poor damping in these cases proved to be insufficient to eliminate the additional 

errors introduced by intergrid transfers during each multigrid cycle. 
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Table 3. Work Requirements for Convergence, First-Order Solver, 64x32 Square Grid, 

Periodic Boundaries, a — 20°, p = 2, q = 2 

Moo = 0.05 

Grids No PC Türkei PC Block-Jacobi PC 

1 DNC* 5669 5985 

2 33951 3670 4026 

3 17577 1289 2413 

4 15986 724 2261 

Moo = 0.1 

Grids No PC Türkei PC Block-Jacobi PC 

1 39145 6057 6097 

2 20776 3832 4176 

3 10792 1289 2917 

4 9471 776 2935 

Moo = 0.2 

Grids No PC Türkei PC Block-Jacobi PC 

1 24433 7141 6409 

2 13070 4476 4314 

3 6732 1275 2835 

4 5682 773 2401 
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Table 4. Work Requirements for Convergence, K = 0 Solver, 64x32 Square Grid, Peri- 

odic Boundaries, a = 20°, p = 2, q = 2 

Moo = 0.05 

Grids No PC Türkei PC Block-Jacobi PC 

1 DNC* DNC* DNC* 

2 DNC* 32019 DNC* 

3 unstable 4573 DNC* 

4 unstable 2810 unstable 

Moo = 0.1 

Grids No PC Türkei PC Block-Jacobi PC 

1 DNC* DNC* DNC* 

2 DNC* 21297 DNC* 

3 unstable 4754 DNC* 

4 unstable 2810 unstable 

Moo = 0.2 

Grids No PC Türkei PC Block-Jacobi PC 

1 DNC* DNC* DNC* 

2 DNC* 36564 DNC* 

3 unstable 4838 37467 

4 unstable 2932 unstable 
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Fig. 8. 64x32 structured grid, solid circular arc bump, height = 0.042c. 

Finally, flow over a solid bump was considered. The domain for this test was 5.5 

chord lengths long and 2 chord lengths high; the height of the circular arc bump was 

4.2% of the chord length. (This geometry was used by Lynn [5] and was incorporated 

here in order to verify correct code development.) A simple 64x32 unclustered alge- 

braic grid was applied, as shown in Figure 8. The solid lower wall was simulated by 

the use of reflected ghost cells across the lower boundary. Free boundary conditions 

were applied to each of the other three boundaries using a ghost-cell approach. 
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As in the first two test sets, first- and second-order solvers were applied over 

three freestream Mach numbers, and 1-, 2-, 3-, and 4-level V-cycle multigrid algo- 

rithm were used. The work requirements for convergence in these cases are listed in 

Tables 5 and 6. As with the previous two test sets, preconditioning was beneficial in 

every case, but again the Türkei preconditioner provided the greater benefit. In this 

group of tests, three free boundaries again allowed error propagation to play a role in 

error removal; thus, the Türkei preconditioner's two-fold advantages of better high- 

frequency dissipation and low-frequency propagation can be credited with providing 

the best performance of the three systems. 

Normalized residual histories for a representative sample of the second-order tests 

are also plotted. Figures 9-11 compare the effectiveness of each preconditioner in 

accelerating convergence for single-grid and 4-level multigrid algorithms. These plots 

again show that, while the block-Jacobi preconditioner provides definite improvement 

over the system without preconditioning, the Türkei preconditioned system invariably 

allows faster convergence than the block-Jacobi preconditioned system. 
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Table 5. Work Requirements for Convergence, First-Order Solver, 64x32 Grid, Solid 

Bump, t = 0.042c, p = 2, q = 2 

Moo = 0.05 

Grids No PC Türkei PC Block-Jacobi PC 

1 9253 1221 4181 

2 9357 739 4232 

3 10063 730 4511 

4 10166 738 4548 

Moo = 0.1 

Grids No PC Türkei PC Block-Jacobi PC 

1 5469 1225 2437 

2 5251 745 2626 

3 5485 750 2733 

4 5501 759 2713 

Moo = 0.2 

Grids No PC Türkei PC Block-Jacobi PC 

1 2801 1241 1241 

2 3339 757 1326 

3 3973 778 1384 

4 4173 794 1447 
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Table 6. Work Requirements for Convergence, K = 0 Solver, 64x32 Grid, Solid Bump, 

t = 0.042c, p = 2, q = 2 

Moo = 0.05 

Grids No PC Türkei PC Block-Jacobi PC 

1 10249 1897 5257 

2 13434 912 5165 

3 14874 749 5839 

4 15284 1620 5999 

Moo = 0.1 

Grids No PC Türkei PC Block-Jacobi PC 

1 6345 1929 4145 

2 8315 924 3309 

3 8951 761 3584 

4 9139 774 3668 

Moo = 0.2 

Grids No PC Türkei PC Block-Jacobi PC 

1 4193 2017 2737 

2 3714 946 1531 

3 3861 785 1509 

4 4036 798 1559 
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Fig. 11. Preconditioner effectiveness: solid bump, 64x32 grid, M^ = 0.1, second-order 

solver, p = 2, q = 2. Solid: Euler; Dashed: Türkei; Dash-Dot: Block-Jacobi. 

a) 1 grid level and b) 4 grid levels. 



39 

log10 Res 

2000. 4000. 
Work units 

6000. 8000. 

Fig. 12. Multigrid effectiveness: no preconditioner, 64x32 grid, solid bump, M^ = 0.1, 

second-order solver, p = 2, q = 2. Solid: 1 grid; Dashed: 2 grids; Dash-Dot: 

3 grids; Dash-Dot-Dot: 4 grids. 

B.    Multigrid Effectiveness 

A second conclusion can be drawn from these results. Convergence of the two pre- 

conditioned systems is generally accelerated by utilizing more multigrid levels, with 

some exceptions due to the fact that each ever-coarser grid adds additional compu- 

tational work while acting upon fewer and fewer error components. Conversely, the 

use of multigrid with the unpreconditioned system often slowed convergence, in sev- 

eral cases dramatically. Some examples of this phenomenon are illustrated in Figures 

12-14. It becomes apparent that when preconditioning is not used to enhance the 

high-frequency damping properties of a solver, the benefits of multigrid may not be 

realized. 
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C.    Mach Number Dependence 

A third conclusion is drawn from these results. The tables show that, in general, 

convergence rates for the unpreconditioned and block-Jacobi preconditioned systems 

improve as Mach number increases. This is due to the fact that high-frequency er- 

ror modes lying close to the g = 1 contour at very low freestream Mach numbers 

gradually pull away and are damped more efficiently at higher Mach numbers. The 

Türkei preconditioned system, however, exhibits a distinctly different trend. In fact, 

convergence is essentially independent of Mach number. These trends are illustrated 

here in Figures 15-18. This interesting result indicates that, at very low Mach num- 

bers, block-Jacobi performance will deteriorate while the Türkei preconditioner will 

continue to accelerate convergence, making it the preconditioner of choice at very low 

flow speeds. (It is noted that the single unusual residual history in Figure 18b, which 

was the only case to exhibit this unexpected behavior, remains unexplained.) 
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Fig. 15. Mach number dependence: no preconditioner, 64x32 grid, solid bump, sec- 

ond-order solver, p = 2, q = 2. Solid: M^ = 0.05; Dashed: M^ = 0.1; 

Dash-Dot: M^ = 0.2. a) 1 grid level and b) 4 grid levels. 
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Fig. 16. Mach number dependence: block-Jacobi preconditioner, 64x32 grid, solid 

bump, second-order solver, p = 2, q = 2. Solid: M^ = 0.05; Dashed: 

Moo = 0.1; Dash-Dot: M^ = 0.2. a) 1 grid level and b) 4 grid levels. 
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Fig. 17. Mach number dependence: Türkei preconditioner, 64x32 grid, solid bump, 

second-order solver, p = 2, q = 2. Solid: M«, = 0.05; Dashed: M^ = 0.1; 

Dash-Dot: M^ = 0.2. a) 1 grid level and b) 2 grid levels. 
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Fig. 18. Mach number dependence: Türkei preconditioner, 64x32 grid, solid bump, 

second-order solver, p = 2, q = 2. Solid: M«, = 0.05; Dashed: MM = 0.1; 

Dash-Dot: M^ = 0.2. a) 3 grid levels and b) 4 grid levels. 
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D.    Solution Accuracy 

A final observation is made based on the results of the solid bump flow tests. Figures 

19-20 show the second-order accurate converged solutions for the original system and 

the two preconditioned systems with M^ = 0.05. In Figure 19, total pressure con- 

tours are plotted; the distribution of total pressure in an inviscid flow should remain 

constant everywhere in the flow. Unexpectedly, the solution to the unpreconditioned 

and block-Jacobi preconditioned systems shows a small but noticeable variation in 

total pressure. In contrast, the Türkei preconditioned solution shows almost no varia- 

tion in total pressure, clearly making it a more accurate solution. Figure 20 shows the 

Mach number distributions of the converged solutions. Again, the solutions for the 

Turkel-preconditioned system are noticeably different from the other two solutions. 

In fact, solution to the Türkei preconditioned system has more symmetric Mach con- 

tours about the bump, thus indicating a decreased presence of numerical dissipation 

as a result of the modification to the Roe scheme. Thus, these results agree with the 

conclusions in [18, 19, 20] that the Türkei preconditioner improves the accuracy of a 

solution. 
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(a) 

(b) 

Fig. 19. Total pressure contours from 0.7153 to 0.7158 in 20 steps. Second-order solver, 

Moo = 0.05. a) No preconditioner / block-Jacobi preconditioner and b) Türkei 

preconditioner. 
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(a) 

(b) 

Fig. 20. Mach contours from 0.046 to 0.055 in 20 steps. Second-order solver, 

MQO = 0.05. a) No preconditioner / block-Jacobi preconditioner and b) Türkei 

preconditioner. 
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CHAPTER IV 

CONCLUSIONS 

In this study, several simple but effective tests were performed to evaluate and com- 

pare the utility of the Türkei and block-Jacobi preconditioners when employed in a 

multigrid algorithm to solve the compressible Euler equations. As expected, use of 

the multigrid algorithm generally served to accelerate convergence, and the two pre- 

conditioned systems converged significantly more quickly than the original system. 

Work already done by others indicates that the two preconditioners have sim- 

ilar high-high frequency error-damping properties. However, it is recognized that 

the Türkei preconditioner has superior convective characteristics. As a result of this 

improved propagation, we have shown slightly improved damping for high-low and 

low-high modes which must be eliminated by an iterative scheme when applying 

full-coarsening multigrid. The most interesting question studied here, therefore, is 

whether the slightly better damping properties and significantly improved convective 

characteristics can have a significant influence on convergence rates. The first- and 

second-order results generated clearly indicate that they do indeed play an important 

role in accelerating convergence to a steady solution. In every test performed, the 

Turkel-preconditioned system converged more rapidly than the block-Jacobi precondi- 

tioned system. Thus, based on the results of the work, it is concluded that there exist 

better local preconditioners than block-Jacobi for the two-dimensional compressible 

Euler equations, especially at low freestream Mach numbers. 

Other observations were made about the systems tested. First, visualization 

of the flowfield over the solid bump showed that the Turkel-preconditioned system 

provided more accurate results than did the unpreconditioned and block-Jacobi pre- 

conditioned systems. Second, it was seen that the convergence rates for the Türkei- 



50 

preconditioned system were essentially independent of freestream Mach number at 

these low speeds. Finally, it was observed that, particularly for second-order test- 

ing, the use of multigrid without preconditioning generally slowed convergence rates. 

Thus, it is concluded that, for higher-order CFD applications, multigrid must be used 

in conjuction with local preconditioning in order to be effective. 

Future studies are recommended to further validate the conclusions drawn here. 

Use of a semi-coarsening algorithm would distinctly delineate the relative impact of 

the Türkei preconditioner's damping and error-propagation properties on convergence 

acceleration. Repeated studies over a wider range of Mach numbers would clarify 

the extent of the validity of these conclusions over the subsonic flow regime. (It is 

hypothesized that the Türkei preconditioner will continue to outperform the block- 

Jacobi preconditioner at lower Mach numbers, whereas the two preconditioners will 

begin to perform more similarly at higher Mach numbers.) Grid dependence studies 

should be performed before these conclusions can be extended to significantly finer 

grids. Airfoil simulations would extend the results to another important engineering 

application. Finally, simulations should be performed with other continuum-based 

local precondtioners, such as that developed by van Leer, in order to draw broad 

conclusions about the effectiveness of this entire class of preconditioners. 
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